There is a tin of 10 biscuits in the maths office. Inside the tin there are 3 Digestive Biscuits and 7 Hobnobs.
Andrea takes two biscuits at random from the tin to eat. Complete the probability tree diagram.

Work out the probability the two biscuits were not the same type.

Bronze

There are 4 black pens, 4 blue pens and 2 red pens in a pack.

Maria takes at random a pen from the pack notes the colour and gives it to a student.

Work out the probability she selects two pens the same colour.

There are n chocolates in a bag. 4 of the chocolates are mint chocolate and the rest are plain chocolate.
a) Work out the probability of selecting a mint chocolate.
b) Work out the probability of selecting a plain chocolate.
c) Calculate the probability of randomly selecting two mint chocolates from the bag to eat

There is a tin of 10 biscuits in the maths office Inside the tin there are 3 Digestive Biscuits and 7 Hobnobs.
Andrea takes two biscuits at random from the tin to eat. Complete the probability tree diagram.

Work out the probability the two biscuits were not the same type.

$$
P(D, H)=\frac{3}{10} \times \frac{7}{9}=\frac{21}{90}
$$

$$
P(\text { Not Same })=\frac{21}{90}+\frac{21}{90} \quad P(H, D)=\frac{7}{10} \times \frac{3}{9}=\frac{21}{90}
$$

$$
=\frac{42}{90}=\frac{7}{15}
$$

Bronze

There are 4 black pens, 4 blue pens and 2 red pens in a pack.

Maria takes at random a pen from the pack notes the colour and gives it to a student.

Work out the probability she selects two pens the same colour.
$P($ Black, Black $)=\frac{4}{10} \times \frac{3}{9}=\frac{12}{90}$
$P($ Blue, Blue $)=\frac{4}{10} \times \frac{3}{9}=\frac{12}{90}$
$P($ Red, Red $)=\frac{2}{10} \times \frac{1}{9}=\frac{2}{90}$
$P($ Same Colour $)=\frac{12}{90}+\frac{12}{90}+\frac{2}{90}$
$=\frac{16}{90}=\frac{8}{45}$

There are n chocolates in a bag. 4 of the chocolates are mint chocolate and the rest are plain chocolate.
a) Work out the probability of selecting a mint chocolate.

$$
P(\operatorname{Min} t)=\frac{4}{n}
$$

b) Work out the probability of selecting a plain chocolate.

$$
P(\text { Plain })=\frac{n-4}{n}
$$

c) Calculate the probability of randomly selecting two mint chocolates from the bag to eat.

$$
\begin{aligned}
P(M, M) & =\frac{4}{n} \times \frac{3}{n-1} \\
& =\frac{12}{n(n-1)} \\
& =\frac{12}{n^{2}-n}
\end{aligned}
$$

