The equation of a straight line graph is __________. The gradient is denoted by _______ and the __________ is denoted by c. The __________ is the steepness of a line, whereas the intercept is where the graph cuts across the __________.

Skill 1 Find the gradient of the line connecting the two points.

1) Coordinate A (1,2) Coordinate B (5,10)
2) Coordinate A (4,3) Coordinate B (6,9)
3) Coordinate A (4,7) Coordinate B (16,13)
4) Coordinate A (-2,4) Coordinate B (4,8)
5) Coordinate A (-2,7) Coordinate B (0,15)
6) Coordinate A (-4,-4) Coordinate B (-1,11)

Skill 2 Find the equation of these straight line graphs.

Equation A
Equation B
Equation C
Equation A
Equation B
Equation C
Equation A
Equation B
Equation C

Equation of a straight line

\[y = mx + c\]

M is the gradient
(Remember you need two pairs of coordinates)

Gradient = \[
\frac{\text{Change in } y}{\text{Change in } x} = \frac{y_2-y_1}{x_2-x_1}
\]

C is the y-intercept
This is the value at which the line crosses the Y-axis
Stretch 1
Find the equation of these straight line graphs.

Stretch 2
try to join the 9 points by just three straight lines and find a missing point to make 4-in-a-line on each line what are the equations of the three lines for each question?

(1)

(2)

(3)

Equation A
Equation B
Equation C

Stretch 2 resource from http://donsteward.blogspot.co.uk/2013/11/4-in-line-further-extended.html
The equation of a straight line graph is \[y = mx + c \]. The gradient is denoted by \(m \) and the \(y \)-intercept is denoted by \(c \). The \(y \)-intercept is the steepness of a line, whereas the intercept is where the graph cuts across the \(x \)-axis.

Skill 1 Find the gradient of the line connecting the two points.

<table>
<thead>
<tr>
<th>1) Coordinate A - (1,2)</th>
<th>2) Coordinate A - (4,3)</th>
<th>3) Coordinate A - (4,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinate B – (5,10)</td>
<td>Coordinate B – (6,9)</td>
<td>Coordinate B – (16,13)</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>(\frac{1}{2})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4) Coordinate A - (-2,4)</th>
<th>5) Coordinate A - (-2,7)</th>
<th>6) Coordinate A - (-4,-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinate B – (4,8)</td>
<td>Coordinate B – (0,15)</td>
<td>Coordinate B – (-1,-11)</td>
</tr>
<tr>
<td>(\frac{2}{3})</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Skill 2 Find the equation of these straight line graphs.

<table>
<thead>
<tr>
<th>Equation A</th>
<th>Y=2x</th>
<th>Equation A</th>
<th>Y=(\frac{1}{2}x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation B</td>
<td>Y=2x+3</td>
<td>Equation B</td>
<td>Y=(\frac{1}{2}x+3)</td>
</tr>
<tr>
<td>Equation C</td>
<td>Y=2x-4</td>
<td>Equation C</td>
<td>Y=(\frac{1}{2}x - 4)</td>
</tr>
</tbody>
</table>

www.missbsresources.com
Stretch 1
Find the equation of these straight line graphs.

Equation A	Y = \(-\frac{1}{2}x - 1\)
Equation B	Y = \(-\frac{1}{3}x + 3\)
Equation C	Y = -4x + 2

Stretch 2
Try to join the 9 points by just three straight lines and find a missing point to make 4-in-a-line on each line. What are the equations of the three lines for each question?

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation A</td>
<td>Y = -x + 2</td>
<td>Equation A</td>
</tr>
<tr>
<td>Equation B</td>
<td>Y = 2x + 1</td>
<td>Equation B</td>
</tr>
<tr>
<td>Equation C</td>
<td>Y = x - 1</td>
<td>Equation C</td>
</tr>
</tbody>
</table>

www.missbsresources.com