

Write down the exact value of $\cos 30^{\circ}$

Here are sketches of four triangles. The longest side is exactly 1 cm . Another length is given to 2 decimal places.

a) Circle the value of $\sin 70^{\circ}$. Correct to 2 decimal places.

$$
\begin{array}{llll}
0.94 & 0.56 & 0.82 & 0.34
\end{array}
$$

b) Work out the value of x.

Give your answer to 1 decimal place.

Which of these values cannot be sine of an angle?
Circle your answer.

$$
\begin{array}{ccc}
-1 & -0.5 & 0 \\
0.5 & 1 & 1.5
\end{array}
$$

Gold Kír

Show that $10 \sin 60^{\circ}-3 \tan 60^{\circ}$ can be written in the form $\mathrm{a} \sqrt{b}$ where a and b are integers.
Write down the exact
value of $\tan 30^{\circ}$
Bronze

Circle the value of $\sin 60^{\circ}$.
Here are sketches of four triangles
The longest side is exactly 1 cm .
Another length is given to 2 decimal places.

Write down the exact value of $\cos 30^{\circ}$

$$
\frac{\sqrt{3}}{2}
$$

Bronze 산
a) Circle the value of $\sin 70^{\circ}$. Correct to 2 decimal places.
0.94
0.56
0.82
0.34
b) Work out the value of x.

Give your answer to 1 decimal place.
Write down the exact value of $\tan 30^{\circ}$

$$
\begin{aligned}
& \tan (30)=\frac{\sin (30)}{\cos (30)} \\
& =\frac{\sqrt{1}}{\sqrt{3}}=\frac{1}{\sqrt{3}} \quad \text { Bronze } \quad \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& 1 \text { decimal place. } \\
& \sin 70^{\circ}=\frac{x}{5} \\
& x=5 \sin 70^{\circ} \\
& x=5 \times 0.94 \\
& x=4.7 \mathrm{~cm}
\end{aligned}
$$

Which of these values cannot be sine of an angle?
Circle your answer.

$$
\begin{array}{ccc}
-1 & -0.5 & 0 \\
0.5 & 1 & 1.5 \\
& & \\
& \text { Gold } \frac{1}{k}
\end{array}
$$

Show that $10 \sin 60^{\circ}-3 \tan 60^{\circ}$ can be written in the form $\mathrm{a} \sqrt{b}$ where a and b are integers.

$$
\text { ers. } 60^{\circ}=\frac{\sqrt{3}}{2}
$$

$$
\tan 60^{\circ}=\frac{\sqrt{3}}{\sqrt{1}}=\sqrt{3}
$$

$$
\begin{aligned}
& 10 \times \frac{\sqrt{3}}{2}-3 \times \sqrt{3} \\
& =\frac{10 \sqrt{3}}{2}-3 \sqrt{3} \\
& =5 \sqrt{3}-3 \sqrt{3}=2 \sqrt{3}
\end{aligned}
$$

