

Timester Challenge Rationalising Surds

Rationalise $\frac{1}{\sqrt{5}}$	Rationalise the denominator and simplify $\frac{7}{4 \sqrt{3}}$ Silver	Simplify $\frac{3 \sqrt{5}}{2+\sqrt{5}}$
Express $\frac{9}{\sqrt{3}}$ in the form $a \sqrt{b}$, where a and b are positive integers.	Write $\frac{\sqrt{50}+6}{\sqrt{2}}$ in the form of $a+b \sqrt{2}$, where a and b are integers.	Show that $\frac{6+2 \sqrt{3}}{2-\sqrt{3}}$ can be simplified to $18+10 \sqrt{3}$.
Bronze	Silver	Gold

$\begin{gathered} \text { Rationalise } \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \\ =\frac{\sqrt{5}}{5} \end{gathered}$ Bronze	Rationalise the denominator and simplify $\begin{gathered} \frac{7}{4 \sqrt{3}} \\ \frac{7}{4 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{7 \sqrt{3}}{4 \times 3}=\frac{7 \sqrt{3}}{12} \end{gathered}$	Simplify $\begin{gathered} \frac{3 \sqrt{5}}{2+\sqrt{5}} \\ \frac{3 \sqrt{5}}{(2+\sqrt{5})} \times \frac{(2-\sqrt{5})}{(2-\sqrt{5})}=\frac{6 \sqrt{5}-3 \times 5}{4-5} \\ =\frac{6 \sqrt{5}-15}{-1}=15-6 \sqrt{5} \quad \text { Gold } \end{gathered}$
Express $\frac{9}{\sqrt{3}}$ in the form $a \sqrt{b}$, where a and b are positive integers. $\begin{aligned} & \frac{9}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\ & =\frac{9 \sqrt{3}}{3}=3 \sqrt{3} \end{aligned}$ Bronze	$\begin{aligned} & \frac{\sqrt{50}+6}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{100}+6 \sqrt{2}}{2} \\ & =\frac{10+6 \sqrt{2}}{2}=5+3 \sqrt{2} \text { Silver } \end{aligned}$	Show that $\frac{6+2 \sqrt{3}}{2-\sqrt{3}}$ can be simplified to $18+10 \sqrt{3}$ $\begin{aligned} & \frac{(6+2 \sqrt{3})}{(2-\sqrt{3})} \times \frac{(2+\sqrt{3})}{(2+\sqrt{3})} \\ & =\frac{12+4 \sqrt{3}+6 \sqrt{3}+2 \times 3}{4-3} \\ & =\frac{18+10 \sqrt{3}}{1}=18+10 \sqrt{3} \end{aligned}$

www.missbsresources.com

